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Phase synchronization and noise-induced resonance in systems of coupled oscillators

H. Hong and M. Y. Choi
Department of Physics, Seoul National University, Seoul 151-742, Korea
~Received 16 March 2000; revised manuscript received 23 June 2000!

We study synchronization and noise-induced resonance phenomena in systems of globally coupled oscilla-
tors, each possessing finite inertia. The behavior of the order parameter, which measures the collective syn-
chronization of the system, is investigated as the noise level and the coupling strength are varied, and hysteretic
behavior is manifested. The power spectrum of the phase velocity is also examined and the quality factor as
well as the response function is obtained to reveal noise-induced resonance behavior.

PACS number~s!: 05.45.Xt, 05.10.Gg
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I. INTRODUCTION

In recent years the networks of coupled nonlinear osci
tors have attracted much attention: They serve as a proto
model for a variety of self-organizing systems in physi
chemistry, biology, and social sciences, and exhibit the
markable phenomena of synchronization@1,2#. Among those
the system with global coupling has been mostly stud
both analytically and numerically, owing to analytical sim
plicity and some physical as well as biological applicatio
@3–5#. In such a system of globally coupled oscillators, t
effects of nonzero inertia and of noise as well as the effe
of periodic driving on synchronization have been examin
@6,7#. Of particular interest in the presence of noise is
possible amplification of the response of the system, aris
from the interplay between the noise and driving@8#. Such
stochastic resonance phenomena, having various pote
applications, have received much attention@9–12#. Recently,
the interesting possibility of stochastic resonance in syst
without external periodic driving has been pointed out@13–
15#. For example, noise-controlled resonance behavior
periodic potential with constant driving has been discuss
and in the limit of low damping the inertia has been shown
play the role of a surrogate of external periodic driving@14#.
While such noise-induced resonance behavior has bee
vestigated in oscillator systems with relatively few degre
of freedom, typically single-oscillator systems, or in syste
of excitable elements@16#, the possibility of detecting the
resonance behavior in a system of coupled~nonexcitable!
oscillators has not been properly addressed.

The purpose of this paper is to examine whether s
noise-induced resonance behavior can appear in a cou
oscillator system with many degrees of freedom. We th
consider the system of globally coupled stochastic osc
tors, each possessing finite inertia, subject to constant dri
force, and investigate the behavior of the order parame
which measures the synchronization of the system, as
noise level and the coupling strength are varied. To und
stand the interplay of noise and driving force, giving rise
the possibility of noise-induced resonance behavior in
absence of periodic driving, we further consider the pow
spectrum of the phase velocity as the response to the dri
force, and investigate both the zero-frequency~dc! compo-
nent and the nonzero-frequency~ac! one. The dc componen
of the power spectrum, proportional to the squared time
PRE 621063-651X/2000/62~5!/6462~7!/$15.00
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erage of the phase velocity, measures the probability that
system, kicked by noise, eventually escapes out o
potential-well minimum. Namely, it describes the interwe
transition. On the other hand, the ac component describes
intrawell oscillation behavior, which does not induce an e
cape out of the potential-well minimum. The order parame
is observed to decrease with noise, manifesting suppres
of the synchronization, and to display hysteretic behav
with the noise level as well as with the coupling streng
Suppression of the synchronization is also reflected by
growth of the dc component of the power spectrum, cor
sponding to the dispersion of the mean phase velocity, w
noise. On the other hand, it is found that the generali
susceptibility, related to the power spectrum via t
fluctuation-dissipation theorem, increases first as the n
grows from zero, reaches its maximum at a finite noise le
and eventually decreases as the noise level is increased
ther. Such noise-induced effects are also observed in
quality factor at appropriate nonzero frequencies, sugges
the presence of intrawell resonance.

This paper consists of five sections: Section II introduc
the system of coupled oscillators, each possessing finite
ertia, subject to random noise and constant driving force.
self-consistency equation for the order parameter, wh
measures the collective synchronization in the system, is
scribed. In Sec. III, the behavior of the order parameter w
the coupling strength and the noise level is investigat
which manifests hysteretic behavior at low noise levels. S
tion IV is devoted to the investigation of the response of
phase velocity to the external driving force, focusing on t
interplay between noise and driving. The power spectrum
the phase velocity is revealed to exhibit noise-induced re
nance in appropriate regimes. Finally, a brief summary
given in Sec. V.

II. SYSTEM OF COUPLED OSCILLATORS

We begin with the set of equations of motion governi
the dynamics ofN coupled oscillators, thei th of which is
described by its phasef i( i 51,2, . . . ,N):

mf̈ i1ḟ i1
K

N (
j 51

N

sin~f i2f j !5v i1h i~ t !, ~1!
6462 ©2000 The American Physical Society
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PRE 62 6463PHASE SYNCHRONIZATION AND NOISE-INDUCED . . .
wherem represents the magnitude of the~rotational! inertia
relative to the damping. The third term on the left-hand s
of Eq. ~1! denotes the global coupling with strengthK/N,
whereas the first and the second on the right-hand side
resent the constant driving force and the random~thermal!
noise, respectively. The driving forcev i is distributed over
the whole oscillators according to the distributiong(v),
which is assumed to be smooth and symmetric aboutv50.
The termh i(t) represents independent white noise with ze
mean and correlationŝh i(t)h j (t8)&52Td i j d(t2t8), where
the noise levelT(.0) plays the role of the ‘‘effective tem
perature’’ of the system. The set of equations of motion
Eq. ~1! describes a superconducting wire network@17# and
may also be regarded as the mean-field version of an arra
resistively and capacitively shunted junctions, which ser
as a common model for describing the dynamics of sup
conducting arrays@18#. In these cases, the constant drivi
force v i corresponds to the direct current bias.

Collective behavior of such anN-oscillator system is con
veniently described by the complex order parameter

C[
1

N (
j 51

N

eif j5Deiu, ~2!

where nonvanishing magnitude (DÞ0) indicates the emer
gence of collective synchronization andu gives the average
phase. Note that the synchronized state corresponds to
superconducting state with global phase coherence in
case of superconducting networks or arrays@17#. The order
parameter defined in Eq.~2! allows us to reduce Eq.~1! to a
singledecoupled equation

mf̈ i1ḟ i1KD sin~f i2u!5v i1h i~ t !, ~3!

where D and u are to be determined by imposing se
consistency. Namely, the order parameter, defined in te
of the phase via Eq.~2!, in turn determines the behavior o
the phase via Eq.~3!, which depends explicitly onD andu.
We then seek a stationary solution withu being constant,
which is possible due to the symmetry of the distribution
v i about zero. Redefiningf i2u asf i and suppressing indi
ces, we write the reduced equation of motion in the form

mf̈1ḟ1KD sinf5v1h~ t !, ~4!

which depends explicitly on the magnitudeD of the order
parameter.

In the absence of noise (T50), the self-consistency equa
tion for the order parameter reads

D5S p

2
2

m

2 Dg~0!KD1
4

3
mg~0!~KD!21

p

16
g9~0!~KD!3

1O~KD!4. ~5!

If the distributiong(v) is given, the collective behavior o
the system can thus be obtained by solving Eq.~5!. In gen-
eral the quadratic term of order (KD)2 is known to induce
hysteresis in the bifurcation diagram@6#. Accordingly, it has
been concluded that the nonzero inertia tends to induce
teresis in the bifurcation diagram of the system@7#.
e

p-

o

n

of
s
r-

the
he

s

f

s-

The self-consistency equation for the order paramete
the presence of noise, particularly at such high temperat
that KD/T!1, has also been considered, yielding@7#

D5D1[
AcK~aK21!

cK2
, ~6!

with the coefficients given by the integrals

a5E
2`

`

dvg~v!
T2mv2

2~T21v2!
,

b5E
2`

`

dvg~v!F T1m~T22v2!2m2v2T

4~T21v2!2

1
m3v212m2T

8~T21v2!

2
6T1m~8T22v2!1m2T~8T22v2!

8~T21v2!~4T21v2!
G .

In this case collective behavior of the system has been
tained as follows: WhenK,Kc[1/a, only the null solution
(D50) is possible. AtK5Kc , on the other hand, the nu
solution loses its stability and the nontrivial solutionD1 ,
together with the unphysical solutionD2[2D1 , emerges
via a pitchfork bifurcation. Subsequently, it grows in a co
tinuous manner (a2/Ac)(K2Kc)

1/2 asK is increased beyond
Kc @6,7#.

III. PHASE SYNCHRONIZATION

In this section we present in detail the behavior of t
order parameter with the coupling strength and the no
level. We have performed extensive numerical simulatio
on the equations of motion given by Eq.~1! at various noise
levels and coupling strengths. The order parameterD has
been computed from the definition given by Eq.~2!, and its
behavior depending on the coupling strength and the n
level has been examined. In simulations Eq.~1! has been
integrated with discrete time steps ofdt50.001, and for con-
venience, a semicircle distribution of radiusr 50.5 has been
chosen forg(v). ~We have also considered other types
distributions such as Gaussian, only to find no qualitat
change.! In computing the order parameter,Nt5105 time
steps have been used while the data from the first 53104

steps are discarded at each run. Bothdt and Nt have been
varied to confirm that the stationary state has been achie
We have then computed the order parameter in the syste
N52000 oscillators, each having inertiam50.8.

The obtained behaviors of the order parameter with
coupling strength and the noise level are displayed in Fig
and 2. Figure 1~a! shows the behavior as the couplin
strengthK is varied with the noise levelT kept fixed: Circles
and squares describe the behavior of the order paramet
the coupling strength is increased and decreased, res
tively. At zero noise (T50), 20 independent runs have bee
performed with different initial configurations, over whic
averages are taken. The corresponding error bars have
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6464 PRE 62H. HONG AND M. Y. CHOI
estimated by the standard deviations whereas those
points without explicit error bars have errors smaller than
size of the symbol. Note the hysteresis manifested at z
noise and weakening as the noise strength is increased
zero. These characteristic features asK is varied for a given
T agree well with the results of Ref.@7#. Figure 1~b! shows
that the critical coupling strengthKc , beyond which syn-
chronization sets in, increases monotonically with the no
level T, demonstrating the suppression of synchronization
noise. HereKc has been estimated by the value of the co
pling strength at which the order parameterD first becomes
nonzero to a precision of 1021. The circles and squares
again corresponding to the data for increasing and decrea
K, respectively, have been obtained from averages taken
ten independent runs with different initial configurations a
the error bars estimated by the standard deviation. Thus,
like the excitable system@16#, noise-induced synchronizatio
does not emerge here. Further, the hysteretic behavior
flected by the difference in the critical coupling strength b
tween the two cases, is revealed to diminish conspicuo
as the noise level is increased.

In Fig. 2~a! the behavior of the order parameter with t
noise levelT for fixed coupling strengthK is displayed. Here
circles and squares represent the data for increasing an

FIG. 1. ~a! The order parameter as a function of the coupli
strengthK for various values of the noise levelT. Circles and
squares represent the data for increasing and decreasing the
pling strength, respectively, and the solid and dashed curves
merely guides to the eye. Hysteresis is manifested at zero noise
observed to weaken with the noise.~b! Critical coupling strength,
beyond which synchronization sets in, is shown to increase witT.
Notation is the same as that in~a!, with the error bars estimated b
the standard deviation. It is observed that noise in general
presses both synchronization and hysteresis.
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creasingT, respectively, and the typical error bars, estima
by the standard deviation obtained from 20 independent r
with different initial configurations, are shown on the da
points atK50.7. Figure 2~b! displays the detailed behavio
with the noise strength for the coupling strengthK50.7,
again manifesting the hysteresis. Note that the hysteres
most conspicuous for the coupling strength around t
value, decreasing as the coupling strength is increased
weak coupling strengths, the system is not synchronizedD
50), giving no hysteresis. It is thus concluded that the s
tem exhibits quite generally hysteretic behavior as either
coupling strength or the noise level is varied, which has
origin in the nonvanishing inertia.

IV. NOISE-INDUCED RESONANCE

In this section we examine the phase velocity and
power spectrum, and investigate the possibility of the noi
induced resonance. The power spectrum of the phase ve
ity ḟ i is given by

S~ f !5
1

N (
i 51

N

uṽ i~ f !u2[^^uṽ i~ f !u2&&, ~7!

where ṽ i( f )[*dte2p i f tḟ i is the Fourier component of th
phase velocity at frequencyf and the average over differen
noise realizations is also to be taken. Thus^^•••&& stands for

ou-
re
nd

p-

FIG. 2. ~a! The order parameter as a function of the noise le
T for various values of the coupling strengthK. Circles and squares
represent the data for increasing and decreasing the noise l
respectively, and the solid and dashed curves are merely guid
the eye.~b! Behavior of the order parameter with the noise level
coupling strengthK50.7, with the same notation as in~a!. Mani-
fested is the hysteretic behavior as the noise level is varied.
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the average over the noise realizations as well as over
whole oscillators. It is related to the response function of
system via the fluctuation-dissipation theorem@19#:

S~ f !52T Rex~ f !, ~8!

where Re denotes the real part and the generalized susc
bility x( f ) is defined to be the Fourier transform of the a
propriate linear-response function. When the system is
turbed by ~time-dependent! external driving, the resulting
change in the average phase velocity takes the form

d^^ṽ i~ f !&&5x~ f !dI ~ f !, ~9!

wheredI ( f ) is the Fourier component of the~uniform! ex-
ternal driving at frequencyf. In particular, the dc componen
of the power spectrum, describing the dc response, read

S~ f 50!5
1

N (
i 51

N

uṽ i~0!u25
1

N (
i 51

N F E dtḟ i G2

}^^^ḟ i&
2&&,

~10!

where^•••& denotes the time average. In the case of a
perconducting wire network or array, the phase velocity c
be identified with the voltage via the Josephson relation,
the system is driven appropriately by a~time-dependent! ex-
ternal current. Accordingly, Eq.~8! connects the generalize
resistance with the voltage power spectrum@19#.

To investigate the dc component of the power spectru
we begin with Eq.~3! and consider two types of solution
depending on the coupling strength: In the limit of we
coupling strength, each oscillator in the system favors os
lating with its own frequency and the system is not synch
nized, yieldingD'0. The solution of Eq.~3! is then given
by

ḟ i5v i1~v i02v i !e
2t/m1

1

m
e2t/mE

0

t

dt8et8/mh i~ t8!,

~11!

wherev i0[ḟ i(t50) is the initial phase velocity. Taking th
time average of Eq.~11! in the stationary state (t→`), we
obtain the mean phase velocity or the frequency of thei th
oscillator,

^ḟ i&5v i . ~12!

We now take the average over theN oscillators; this reduces
Eq. ~12! to

^^^ḟ i&&&[
1

N (
i 51

N

^ḟ i&5
1

N (
i 51

N

v i50, ~13!

where the symmetry of the distributiong(v) aboutv50 in
the thermodynamic limit (N→`) has been used.

On the other hand, the average of the square of the o
lator frequency, corresponding to the dc component of
power spectrum, does not vanish:

^^^ḟ i&
2&&5

1

N (
i 51

N

^ḟ i&
25^^v i

2&&, ~14!
he
e
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where^^v i
2&& corresponds to the variance of the distributi

of v i , i.e., ^^v i
2&&5*dvg(v)v2. For example, in the

simple case of thed-function distribution g(v)5(1/2)
3@d(v2v0)1d(v1v0)#, the variance is given bŷ̂ v i

2&&
5v0

2, whereas for the semicircle distribution with radiusr
we havê ^v i

2&&5r 2/2. Note that in this weak-coupling limi

^^^ḟ i&
2&& as well aŝ ^^ḟ i&&& does not depend on the nois

level T, indicating the absence of noise-induced effects.
In the limit of strong coupling strength, the oscillato

tend to oscillate in a coherent manner, displaying synchro
zation (D'1). Since the order parameterD in Eq. ~3! de-
pends explicitly on the noise, decreasing with the noise le
T, it is expected that unlike in the weak-coupling lim

^^^ḟ i&
2&& varies with the noise level. When the noise level

sufficiently low (T'0) in this strong-coupling limit, the sys
tem is fully synchronized and described by the station
solution

f i5sin21S v i

KD D , ~15!

which yields ^^^ḟ i&&&50 and ^^^ḟ i&
2&&50. At high noise

levels (T→`), on the other hand, the system is not synch
nized (D'0), and we obtain̂^^ḟ i&

2&&5^^v i
2&&, similarly to

the case of the weak-coupling limit. Accordingly, in th
strong-coupling limit,̂ ^^ḟ i&

2&& is expected to behave with
noise as follows: At low noise levels,^^^ḟ i&

2&& increases
from zero with the noise. As the noise level is raised furth
it saturates eventually toward its asymptotic value^^v i

2&&.
Note that ^^^ḟ i&

2&& just corresponds to the dispersion
mean-square displacement of the oscillator frequencies
the system sincê̂ ^ḟ i&&&50. Its monotonic growth thus in-
dicates suppression of the frequency synchronization, wh
accompanies that of the phase synchronization measure
the order parameter in Sec. III. The dc susceptibility, giv
by x0[Rex( f 50)5S( f 50)/2T}^^^ḟ i&

2&&/T, then grows
as the noise levelT is increased from zero and diminishe
with T at high noise levels; in between it is expected to rea
its maximum. Therefore, in contrast with synchronizatio
which is suppressed by noise, the response of the phase
locity to the ~uniform! external driving can be enhanced b
adding an appropriate amount of noise.

To confirm the analytical argument presented above,
have performed numerical simulations on the set of eq
tions of motion in Eq.~1!. For convenience, we have consi
ered the semicircle distribution forg(v), and integrated Eq
~1! with discrete time steps ofdt50.01. In computing the
phase velocity,Nt5105 time steps have been used at ea
run, with the data from the first 53104 steps discarded. We
have again varied bothdt andNt to verify that the stationary
state has been achieved, and performed ten independent
with different initial configurations, over which average
have been taken. In this manner we have computed^^^ḟ i&

2&&
in the system ofN oscillators, forN up to 4096, and con-
firmed that there are no appreciable finite-size effects foN
*1000.

Figure 3 presents the obtained behavior of the dc sus
tibility or the dc component of the noise-divided power spe
trum with the noise levelT in the system ofN52000 oscil-
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6466 PRE 62H. HONG AND M. Y. CHOI
lators, each having inertiam50.8. The semicircle
distribution of radiusr 50.5 has been chosen forg(v) and
the coupling strengthK53 adopted. In particular we hav
considered both cases of increasing and decreasing the
level, only to obtain the same results within error bars. T
behavior shown in Fig. 3 demonstrates that noise helps
system escape from the potential well, enhancing the
sponse of the phase velocity to external driving. It is of
terest to note thatTm('1.4), at which the response becom
its maximum, is almost the same as the critical noise stren
Tc below which synchronization sets in@Tc'1.4 for K53
as shown in Fig. 2~a!#. The height of the effective potentia
barrier of the system described by Eq.~4! is given byKD.
Since the order parameterD decreases with the noise levelT,
the barrier height also becomes lower withT, helping the
escape from the potential well and enhancing the respons
the external driving. Eventually, atTc the potential barrier
vanishes and the response reaches the maximum. It is
concluded that noise not only hinders synchronization, m
ing the critical coupling strengthKc larger @see Fig. 1~b!#,
but also enhances the response of the phase velocity to
external driving force.

We now investigate the ac components of the power sp
trum, i.e., the power spectrum at nonzero frequencies, wh
gives the possibility of noise-induced intrawell resonan
For this purpose, we have also performed numerical sim
tions on the equations of motion, using the same param
values, and compute the power spectrum of the phase ve
ity through the use of the fast Fourier transform. The o
tained power spectrum as a function of the frequencyf is
shown in Fig. 4. At each noise level, averages have b
taken over ten independent runs with different initial co
figurations, to obtain the data represented by such symbo
solid circles, open circles, solid squares, etc., and the e
bars have been estimated by the standard deviation. Note
in the absence of noise (T50), no peak appears at any fini
frequencies, which is natural in the system without perio
~ac! driving. When small noise comes into the system, ho
ever, a peak develops at a nonzero frequency (f '0.3 in our
simulation results! and grows up with the noise, suggestin
the activation of intrawell oscillation by noise. As the noi
level is raised, the amplitude of such a noise-induced

FIG. 3. Behavior of the dc susceptibilityx0 ~in arbitrary units!
with the noise levelT, in the case of the semicircle distribution wit
radiusr 50.5, revealing the noise-enhanced response of the p
velocity. Error bars have been estimated by the standard devia
and the solid curve is merely a guide to the eye.
ise
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trawell oscillation is expected to grow, lowering its fre
quency. Indeed the frequency at which the peak appear
Fig. 4 shifts toward lower values, demonstrating a noi
induced frequency shift. It eventually approaches zero
quency; this describes the system kicked by noise in
potential-well minimum and escaping from the minimum
Namely, the intrawell oscillation induced by noise turns in
the interwell transition. To disclose the noise-induced effe
in such intrawell motion, we have also computed the gen
alized susceptibility at several frequencies versus the n
level, where noise-induced enhancement in the response
again be observed. In particular, at finite frequencies, i
convenient to characterize such noise-induced effects by
appropriate quality factor

Q[Smax~d f / f max!
21, ~16!

whereSmax is the peak height of the power spectrum,f max is
the corresponding frequency, andd f is the half-width of the
peak. Thus the quality factorQ, given by the ratio of the
peak height to the relative width, measures the degree
coherent motion@13#. We have computedQ from the power
spectrum obtained from ten independent runs, taking the
erage at each noise level. The obtained behavior of the q
ity factor Q as a function of the noise levelT is shown in Fig.
5, which demonstrates the presence of the intrawell re
nance induced by noise. The valueT'0.7 at which Q
reaches its maximum is apparently lower than that for
interwell motion in Fig. 3, indicating that intrawell resonan
can be induced by weaker noise.

V. SUMMARY

We have studied the synchronization phenomena and
noise-induced motion in a system of globally coupled os
lators, each possessing finite inertia, subject to constant d
ing force. The detailed behavior of the order parameter
pending on the coupling strength and the noise level
been obtained from numerical simulations, which has
vealed hysteresis both with the coupling and with the no
as well as suppression of the synchronization by noise.
hysteresis with respect to the coupling is most conspicu

se
on

FIG. 4. Power spectrum of the phase velocity~in arbitrary units!
at various noise levels:T50 ~solid circles!, T50.1 ~open circles!,
T50.3 ~solid squares!, T50.5 ~open squares!, T50.7 ~solid tri-
angles!, T50.9 ~open triangles!, T51.1 ~asterisks!, and T51.3
~plus signs!.
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in the absence of noise, weakening as the noise comes
the system; that with respect to the noise appears larg
intermediate coupling strengths, diminishing with the co
pling strength. We have also considered the power spect
of the phase velocity, as the response of the system to
~time-dependent! external driving, and examined the poss
bility of the noise-induced resonance in the system. The
component of the power spectrum, which corresponds to
dispersion of the mean oscillator frequency, has been sh
to grow with noise, again manifesting suppression of
synchronization. On the other hand, the noise-divided po
spectrum or the generalized susceptibility, which descri
the response of the phase velocity to the external driving,
been found to display a peak at a finite noise level, revea

FIG. 5. Behavior of the quality factorQ with the noise levelT
~in the logarithmic scale!, exhibiting the noise-induced resonanc
Error bars have been estimated by the standard deviation an
solid curve is merely a guide to the eye.
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the presence of noise-induced enhancement in the respo
In particular, noise-induced resonance in the intrawell m
tion has been observed in the behavior of the quality fac
with the noise strength. It is thus concluded that noise in
system of coupled oscillators not only suppresses phase
chronization but also helps the system to escape from
potential-well minimum in the response of the phase vel
ity, inducing the resonance. Such noise-induced resona
may be manifested by a resonance peak of the voltage po
spectrum in the case of a superconducting wire network.
nally, we note that the major role of inertia is to bring abo
hysteresis in the response of the system. The inertia i
general necessary for the system to possess~finite! natural
frequencies, and expected to be essential to the ac reson
at these finite frequencies. On the other hand, it may no
crucial in the dc resonance behavior of the power spect
of the phase velocity in the system of coupled oscillato
Preliminary results we have obtained for the case with
inertia indeed indicate that the peak at zero frequency p
sists whereas that at finite frequency disappears, sugge
the presence of only the interwell motion. A detailed inve
tigation of this and other effects is left for further study.
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